Hepatocytes are a rich source of novel aspirin-triggered 15-epi-lipoxin A4.

نویسندگان

  • Esther Titos
  • Nan Chiang
  • Charles N Serhan
  • Mario Romano
  • Joan Gaya
  • Gloria Pueyo
  • Joan Clària
چکیده

Novel aspirin (ASA)-triggered 15-epi-lipoxins (ATL) comprise new potent bioactive eicosanoids that may contribute to the therapeutic effect of this drug. ATL biosynthesis is initiated by ASA acetylation of cyclooxygenase (COX)-2 and was originally identified during the interaction of leukocytes with either endothelial or epithelial cells. Here, we examined ATL biosynthesis in rat hepatocytes either alone or in coincubation with nonparenchymal liver cells (NPC) and in liver homogenates from ASA-treated rats. Rat hepatocytes and CC-1 cells, a rat hepatocyte cell line, displayed COX-1 but not COX-2 mRNA expression and predominantly produced thromboxane A2(TXA2) and 15-hydroxyeicosatetraenoic acid (15-HETE). In these cells, ASA shifted the arachidonic acid metabolism from TXA2 to 15-HETE in a concentration-dependent manner. In contrast, neither indomethacin, ibuprofen, valeryl salicylate, nor nimesulide was able to trigger 15-HETE biosynthesis. SKF-525A, a cytochrome P-450 inhibitor, significantly reduced the effect of ASA on 15-HETE biosynthesis. Furthermore, phenobarbital, a potent inducer of cytochrome P-450 activity, further increased ASA-induced 15-HETE production. ASA treatment of hepatocyte-NPC coincubations resulted in the generation of significant amounts of ATL. In addition, in vivo experiments demonstrated augmented hepatic levels of 15-epi-lipoxin A4 in ASA-treated rats. Taken together and considering that ASA is hydrolyzed on its first pass through the portal circulation, these data indicate that, during ASA's consumption, liver tissue generates biologically relevant amounts of ATL by COX-2-independent mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspirin has a gender-dependent impact on antiinflammatory 15-epi-lipoxin A4 formation: a randomized human trial.

OBJECTIVE Aspirin blocks thromboxane production that contributes to its well-appreciated antiplatelet action. Aspirin also initiates the biosynthesis of novel antiinflammatory mediators from arachidonic acid, namely aspirin-triggered 15-epi-lipoxin A4. We recently conducted a double-blinded clinical trial with healthy subjects in whom low-dose aspirin (81 mg daily) significantly increased aspir...

متن کامل

Rapid Communication Aspirin Has A Gender-Dependent Impact on Antiinflammatory 15-Epi-Lipoxin A4 Formation A Randomized Human Trial

Objective—Aspirin blocks thromboxane production that contributes to its well-appreciated antiplatelet action. Aspirin also initiates the biosynthesis of novel antiinflammatory mediators from arachidonic acid, namely aspirin-triggered 15-epi-lipoxin A4. We recently conducted a double-blinded clinical trial with healthy subjects in whom low-dose aspirin (81 mg daily) significantly increased aspir...

متن کامل

Aspirin-triggered 15-Epi-Lipoxin A4 (LXA4) and LXA4 Stable Analogues Are Potent Inhibitors of Acute Inflammation: Evidence for Anti-inflammatory Receptors

Lipoxins are bioactive eicosanoids that are immunomodulators. In human myeloid cells, lipoxin (LX) A4 actions are mediated by interaction with a G protein-coupled receptor. To explore functions of LXA4 and aspirin-triggered 5(S),6(R),15(R)-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid (15-epi-LXA4) in vivo, we cloned and characterized a mouse LXA4 receptor (LXA4R). When expressed in Chin...

متن کامل

Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo.

Aspirin (ASA) triggers a switch in the biosynthesis of lipid mediators, inhibiting prostanoid production and initiating 15-epi-lipoxin generation through the acetylation of cyclooxygenase II. These aspirin-triggered lipoxins (ATL) may mediate some of ASA's beneficial actions and therefore are of interest in the search for novel antiinflammatories that could manifest fewer unwanted side effects....

متن کامل

Cutting edge: lipoxin (LX) A4 and aspirin-triggered 15-epi-LXA4 block allergen-induced eosinophil trafficking.

Tissue eosinophilia prevention represents one of the primary targets to new anti-allergic therapies. As lipoxin A4 (LXA4) and aspirin-triggered 15-epi-LXA4 (ATL) are emerging as endogenous "stop signals" produced in distinct pathologies including some eosinophil-related pulmonary disorders, we evaluated the impact of in situ LXA4/ATL metabolically stable analogues on allergen-induced eosinophil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 277 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1999